ACNN 2020 Talk:

Learning Directed Acyclic Graphs from Group-Structure Data

Yongsu Lee

Department of Statistics University of Wisconsin-Madison

Sep 4, 2020

What if ... ?

Zheng et al. (2018) suggests NOTEARS method ...

$$\mathbf{A}(\mathbf{W} \circ \mathbf{W})\mathbf{B} = \begin{bmatrix} ||\mathbf{W}^{(1,1)}||_{F} & ||\mathbf{W}^{(1,2)}||_{F} & ||\mathbf{W}^{(1,3)}||_{F} \\ ||\mathbf{W}^{(2,1)}||_{F} & ||\mathbf{W}^{(2,2)}||_{F} & ||\mathbf{W}^{(2,3)}||_{F} \end{bmatrix}$$

Loss function Group Lasso

$$argmin_{W} \ell(W) + \lambda \Sigma_{i\neq j} ||W^{(i,j)}||_{F}$$

 $subject to tr(e^{A(W \circ W)B}) \stackrel{\# of groups}{- d = 0}$
 $acyclicity restriction among groups$

Why NOTEARGIS ?

- Easily applicable to any type of variables
- Can be extended to a mixed-type DAG network learning.
- More precise result for structure learning.

Grouped Gaussian Data 10 groups(nodes) – 2 elements for each 50 observations; 50 simulation iterations

Multi-level Data 30 nodes – 2, 3, or 4 levels 50 observations; 50 simulation iterations

	† 1 ¢	† 1¢		.			
Method	E	TPR	FDR	SHD			
NOTEAR <mark>GI</mark> S	7.88	0.26	0.68	45.52			
CD	4.46	0.15	0.9	70.94			

Method	E	TPR	FDR	SHD
NOTEARGIS	7.04	0.7	0.3	5.34
NOTEARS	3.06	0.31	0.4	8.48